
- Who I am

- PhD (Trinity College Dublin), Radical (shipped Prototype 1 & 2), Ubisoft
Montreal (shipped Watch_Dogs, now on Far Cry 4)

- Who this is aimed at

- Game programming students who don’t necessarily come from a strict
computer science background

- Some points might be basic for CS students, but all are important

- All points could be talked about much more

- Use as a starting point for further reading – see references at end of deck

1

Easy to lose sight of perf

 High-level goals

 Time pressures

 Designitis

 "I’ll fix it later" doesn’t happen as often as you’d like

2

One takeaway from this talk!

You can’t get (closer to) optimal performance unless you know what’s going on at a
low level

3

4

5

Obligatory Moore’s-Law-vs-memory image

6

Note instruction cache – usually not as much of a focus as data cache, but still worth
considering.

Good advice from Jason Gregory:

Keep high-performance code small

Keep high-performance data small and contiguous

7

8

Pointer dereference

9

Cache miss!

Results in expensive fetch from main memory

10

Whole cache line (8b in this case) worth of memory fetched and cached

11

Value returned

12

Adjacent memory location is fetched

13

Cache hit!

14

Implication: think about how you access data

Canonical example: 2D array sum

Contrived, but not that far from real-world scenarios

15

First iteration – cache miss

16

Second iteration – cache miss!

17

…and again…

18

…and so on.

If the data is large vs. cache size, you may completely fill the cache before ending the
first loop - 0% cache utilization!

Performance will be dominated by memory fetch speed – slow.

19

Simple improvement…

20

Switch inner loops!

21

Now one cache miss…

22

…followed by multiple cache hits.

23

…followed by multiple cache hits.

24

…followed by multiple cache hits.

25

Win!

26

27

More generally… Data Oriented Design

Realities of memory fetch speeds necessitate a change in thinking

Think about your data and access patterns, not necessarily the ‘logical’ structure of
objects & hierarchies

28

Simple example: particle systems

Naïve OO design says the action happens per-particle, so a particle should be an
object

But when do we ever work with just a single particle? Consider…

 Per-frame updates (position etc.)

 Building vertex buffers

 Processing dead particles

This is AoS vs. SoA – Arrays of Structures vs Structures of Arrays

Much more to be said about DoD – see references at end (Mike Acton, Tony Albrecht)

29

Overall: memory is an important factor, and always needs to be considered.

Easy to ignore memory if learning gamedev on PC – you’re in for a rude awakening.

Fragmentation: small heap allocations of varying lifetimes leads to a ‘swiss cheese’
effect, where there is a lot of free memory available, but in individual chunks too
small to be useful.

Cache pollution: pulling unnecessary/unused data into cache, possibly evicting other
useful data that then needs to be refetched from memory. Group commonly-used
data together in structures, and consider splitting large structures into smaller
cacheline-sized structures based on usage.

False sharing: in a multi-processor system, accessing adjacent data form different
threads can cause that data to be refetched from memory every time unnecessarily,
because both pieces of data would be stored in the same cacheline and so flushed
whenever any changes are made by another processor.

All important when deciding on storage structures. Eg: array vs. linked list – very
different allocation, access, and cache usage patterns.

30

31

See bigocheatsheet.com

32

To optimize for the CPU, you need to understand what it’s doing in the first place.

In-order processors subject to LHS (Load-Hit-Store), where a piece of data is written
to memory and then immediately read back, causing a stall.

Out-of-order can process other independent instructions while waiting for data,
possibly hiding the stall with other work. But also less predictable.

Functions: prologue/epilogue overhead; inlining. Virtual function vtable indirection
cost.

Branches: prediction hardware ranges in quality, so branches can have varying costs.
Potential processor pipeline flush - plan accordingly.

33

Aside: understanding assembly is essential for understanding performance, but it’s
even more important than that

ASM instructions are the building blocks of all the code you write. Every coder should
be able to at least read & follow them.

Don’t just leave the understanding to “the low-level engine coders”.

34

Especially towards the end of production, you’ll inevitably encounter rare,
unreproducible crashes

One crash in 1000 hours of gameplay sounds rare? 2m copies, 10 hours each… 20,000
crashes!

You have to work with what you have, when you have it.

All the information is there, you just have to know how to find it.

35

Volatile registers: contents may be overwritten inside a function call

Non-volatile registers: values must be saved and restored after a function call

Function prologue/epilogue: reserve stack space, save & restore non-volatile
registers, etc.

36

Some basics of x64 hardware register usage and the Windows x64 calling convention

37

With these few guides, this simple function example becomes a lot clearer…

38

Some coders have an irrational fear of assembly. It’s actually very straightforward!
Understanding is liberating.

Spend a few hours studying the details and exploring your own programs in the
debugger, it will pay off many times over.

See Elan Ruskin’s excellent GDC talk (see references) for more.

39

Can’t talk about CPU performance without mentioning SIMD

A single instruction can perform the same operation on 4 (or more) pieces of data –
perfect for the vector operations common in game code

Intrinsics – compiler-specific wrapper around one or more SIMD instructions.
Compiler can generally schedule more efficiently given intrinsics rather than bare
intructions, and they are easier to write than inline assembly.

Low-level nature and extra restrictions means more effort required to SIMD-ize code,
so only use where suitable

DoD approach fully applies, and code written with DoD in mind can be more easily
converted to SIMD

40

GPU performance is its own massive subject, will only touch on some high-level
concerns here

41

42

43

Eg. Reduce pixel shader instructions – no change in frame time means the bottleneck
is elsewhere

44

Shader complexity

 Different instructions can have different cycle costs – know your architecture! See
Emil Persson talks in references.

Geometry complexity

 Transform cache – use indexed meshes, reorder for best cache usage (see Tom
Forsyth link in references)

 Triangle/pixel ratio – use LODs

Fillrate

 Overdraw – Use depth buffering, early/hierarchical Z

 Esp. problematic with blending

Texture sampling

 Cache use - use mipmapping

 Filtering cost – use mipmapping, simpler filtering

Render target bandwidth

 MRTs, bit depth

45

Another large topic, we’ll just touch briefly on a few things to be aware of.

46

47

48

Just some of the many potential pitfalls

The more complicated/intricate your multithreading setup, the more likely it is to
contain subtle insidious bugs

Race condition: Variable results based on order of thread execution

Priority Inversion: Low-priority thread holds lock on resource that high-priority thread
needs

Deadlock: Two threads are blocked waiting for locks that the other thread holds

ABA problem: Value changed then changed back to original, but another thread
thinks nothing has changed

49

50

Seems like an obvious point, but it’s easy to mistakenly assume you know where the
bottleneck is

Profile before & after – don’t assume that your optimization is a good one

If possible, keep both versions of code functional - makes for much easier profiling.

51

52

Iteration time is massively important – if a change is going to increase build/export
time, slow down artists, or have other negative team-wide impact, weight it up
very carefully.

Comment your code – not only for your fellow coders, but also for yourself in six
months’ time

Debuggability – a piece of code may be awesomely vectorized, streamlined, tightly
packed and memory efficient, but if something goes wrong how hard is it going to be
to pick apart?

Catch errors early – if data can be exported incorrectly, deal with that at export time.
Dealing with bad data at load time is much messier, and will lead to errors not being
dealt with and piling up.

53

54

 Dogged Determination: Technology and Process at Naughty Dog Inc. - Jason Gregory

http://www.gameenginebook.com/resources/SINFO.pdf

https://www.youtube.com/watch?v=f8XdvIO8JxE

Code Clinic: How to Write Code the Compiler can Actually Optimize – Mike Acton

https://raw.githubusercontent.com/macton/presentation-
archive/master/gdc14_code_clinic.pptx

Pitfalls of Object Oriented Programming – Tony Albrecht

http://research.scee.net/files/presentations/gcapaustralia09/Pitfalls_of_Obje
ct_Oriented_Programming_GCAP_09.pdf

Alternatives to malloc and new – Steven Tovey

http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/

55

http://www.gameenginebook.com/resources/SINFO.pdf
https://www.youtube.com/watch?v=f8XdvIO8JxE
https://raw.githubusercontent.com/macton/presentation-archive/master/gdc14_code_clinic.pptx
https://raw.githubusercontent.com/macton/presentation-archive/master/gdc14_code_clinic.pptx
https://raw.githubusercontent.com/macton/presentation-archive/master/gdc14_code_clinic.pptx
http://research.scee.net/files/presentations/gcapaustralia09/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
http://research.scee.net/files/presentations/gcapaustralia09/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/
http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/
http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/
http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/
http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/
http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/
http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/
http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/
http://www.altdev.co/2011/02/12/alternatives-to-malloc-and-new/

C/C++ Low Level Curriculum – Alex Darby

http://www.altdev.co/?s=Low+Level+Curriculum

x64 ABI: Intro to the Windows x64 Calling Convention – Rich Skorski

http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/

Crash Analysis and Forensic Debugging – Elan Ruskin

http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/

Low-level shader optimization (DX9 & DX11) – Emil Persson

http://www.humus.name/index.php?page=Articles&ID=6

http://www.humus.name/index.php?page=Articles&ID=9

56

http://www.altdev.co/?s=Low+Level+Curriculum
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://www.altdev.co/2012/05/24/x64-abi-intro-to-the-windows-x64-calling-convention/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://assemblyrequired.crashworks.org/gdc-2011-crash-analysis-and-forensic-debugging/
http://www.humus.name/index.php?page=Articles&ID=6
http://www.humus.name/index.php?page=Articles&ID=9

 A trip through the graphics pipeline – Fabien Giesen

http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-
pipeline-2011-index/

The AMD GCN Architecture: A Crash Course – Layla Mah

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GS-
4106_Mah-Final_APU13_Full_Version_Web.ppsx

Linear-Speed Vertex Cache Optimisation – Tom Forsyth

https://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html

Big-O Cheat Sheet

http://bigocheatsheet.com/

x86 Opcode and Instruction Reference

http://ref.x86asm.net/

57

http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GS-4106_Mah-Final_APU13_Full_Version_Web.ppsx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GS-4106_Mah-Final_APU13_Full_Version_Web.ppsx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GS-4106_Mah-Final_APU13_Full_Version_Web.ppsx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GS-4106_Mah-Final_APU13_Full_Version_Web.ppsx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GS-4106_Mah-Final_APU13_Full_Version_Web.ppsx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GS-4106_Mah-Final_APU13_Full_Version_Web.ppsx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GS-4106_Mah-Final_APU13_Full_Version_Web.ppsx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GS-4106_Mah-Final_APU13_Full_Version_Web.ppsx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/GS-4106_Mah-Final_APU13_Full_Version_Web.ppsx
https://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html
http://bigocheatsheet.com/
http://ref.x86asm.net/

